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Motivation
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Stop search

Ç Pair-produced supersymmetric top partners in a compressed regime

Ç Standard observables such as ὴ, Ὁ etc. Ÿ hard to separate/distinguish signal events 

from background ones
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Motivation
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Stop search

Ç Clever observables such as ά and ὓ

Ç Still hopeless to suppress background events while keeping a large number of signal ones



Motivation
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Stop search using ╜ variables

Ç More clever (signal/background-targeted) observables (implementing characteristic 

features of signal/background): E.g., ὓ variables

Great for probing challenging region



╜ Variables
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Definition

Ç ὓ variables as (3+1) dimensional analogue of the (2+1) dimensional ὓ variable: 

minimization of the two invariant mass quantities constructed with visible particles over 

the unknown invisible momenta subject to relevant constraints [ Cho, Gainer , DK, Matchev , 

Moortgat , Pape, and 0ÁÒËȟ ȬΫή ]
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╜ Variables
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Why minimize?

Ç 7Å ×ÁÎÔ ÔÏ ȰÒÅÃÏÎÓÔÒÕÃÔȱ ÔÈÅ ÇÉÖÅÎ ÅÖÅÎÔ ÉÎ ÓÐÉÔÅ ÏÆ ÅØÉÓÔÅÎÃÅ ÏÆ ÉÎÖÉÓÉÂÌÅ ÐÁÒÔÉÃÌÅÓ

Ç In general, # of unknowns > # of constraints

Ç 3ÃÁÎÎÉÎÇ ÏÖÅÒ ÓÏÌÕÔÉÏÎ ÓÐÁÃÅ ÄÅÆÉÎÅÄ ÂÙ ÃÏÎÓÔÒÁÉÎÔÓ ÔÏ ÏÂÔÁÉÎ ȰÂÅÓÔȱ ÇÕÅÓÓȾansatz

Constraints

Ç Targeting at ὸӶὸ-like event topology

V MET condition relating the two decay sides: linear constraint, easily 

absorbed/implemented

V On-shell intermediate states with same mass (via full momentum ansatzfor invisible 

particles): non-linear constraints, (in general) highly non-trivial to implement/perform 

constrained minimization



Constrained minimization
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Problem definition

Min f(x) subject to ci(x) = 0    xɴ Rn i=1,2,é,m  n>m

Ç f(x) : objective function

Ç x: variables to be minimized over

Ç ci(x): in general, inequality constraints possible

Ç Some constraints can be easily solved/reduced.

ü Linear constraints: Ex) MET in MT2

ü Some non-linear constraints: Ex) x2+y2=1through polar coordinate

Ç In general, this is not the case!



Constrained minimization
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Basic/conceptual algorithm

Ç Schematically, from an initial guess the solution evolves by some preferred algorithms 

until it satisfies some convergence criteria
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Ç Optimality (first order derivative)

Ὢὼ π

Ç Convexification (second order derivative)

Ὢὼ π

Ç Feasibility

ὧὼ π



Constrained minimization
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Basic algorithm

Ç Conceptually trivial, but not machine -friendly

ü Convexification sufficient for the hyper-surface defined by the constraints!

ü Hard to perform for the computer

Ç Find transformation/modification of           

constrained min. Ÿ unconstrained min. 

to guarantee the convexification in all 

directions.
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Unconstrained minimization
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Method of Lagrange multipliers

Ç Formally, the stationary points Ÿ KKT conditions 

ὧὼ π

Ὢὼ ‗ɇὧὼ π

Ç Lagrange multiplier methods reproduce

the KKT conditions successfully

ὒὼȟ‗ Ὢὼ ‗ɇὧὼ

Ç Convexification not guaranteed in the

direction normal to the surface defined

by the constraints

Ç Successful, but difficult to examine the convexification numerically

ü Modification on the objective function
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Unconstrained minimization
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Quadratic penalty method (QPM)

Ç Intuitively, enforced to be convexified in all directions

ὖὼȟ‘ Ὢὼ ὧὼ ‘ π

Ç KKT conditions and convexification guaranteed

‗ᴼ ‘ȟὧὼᴼπÁÓ‗ᴼ‗ᶻ

Ç Penalty parameter decreases 

as sub-minimizations are performed

Ç However, for a very small penalty parameter,

too sensitive to ὧὼ: ill -conditioning

ü Not make it too small but keep the good properties 
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Unconstrained minimization
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Augmented Lagrangianmethod (ALM)

Ç Add Lagrange multipliers

ὒὼȟ‗ Ὢὼ ‗ɇὧὼ ὧὼ

Ç KKT conditions and convexification guaranteed

‗ᴼ‗ ὧὼᶻ ‘‗ᶻ ‗

Ç Penalty parameter decreases &

Lagrange multipliers also evolves,

as sub-minimizations are performed

Ç Without too small penalty parameter, 

can be approximated to ‗ᶻ: no ill-conditioning
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MINUIT
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Tool for the unconstrained minimization

Ç Remaining job is to find a (at least) reasonable unconstrained minimization tool!

Ç We choose MINUIT framework

ü Could exist better options

ü Has been used in-and-outside HEP community

Ç Among minimization schemes, we use MIGRAD and SIMPLEX

ü MIGRAD: good at folded profile, ὓ develops folded regions

ü SIMPLEX: good at shallowprofile, ὓ develops shallow regions



Implementing the algorithm
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Flow chart

Initiate minimizer/tolerance/penalty term/ Lagrangianmultiplier 

Minimization: MIGRAD and SIMPLEX+MIGRAD

Convergence test: optimality and feasibility

Pass test? or Too many iterations?

Set minimizer/Tighten tolerance/Evolve penalty&Lagrangianterms

End iterations

yes

no



Validity of the algorithm
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Results (preliminary)

Ç ὓὝςvs. ὓςὅὢ: test of the reliability of the constrained minimization with ὸӶὸsample



Validity of the algorithm
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Results (preliminary)

Ç ὓςὅὅ: internal test of the accuracy between two independently implemented codes


